
ICT394 Business Intelligence

Application Development

Dr Danny Toohey

ICT285 Databases

Dr Danny Toohey

Topic 07: Physical Database Design

About this topic

In this topic, we complete our set of topics on the database design
process, by looking at physical design – where we define exactly
how we will implement the database in the target DBMS. In the
labs, we’ll return to Oracle to look in more detail at the decisions
that need to be made and implemented during the physical
database design phase.

Topic learning outcomes

After completing this topic you should be able to:

• Describe the activities in physical database design

• Design tables and integrity constraints for a target DBMS, based on
the logical design

• Explain what views are and what they can be used for

• Draw a transaction usage map (TUM) for the most important
transactions on a database

• Determine when denormalisation may be appropriate

• Use the SQL GRANT and REVOKE statements to manage user access
to database objects

• Briefly describe other measures for DBMS-level security

• Document the physical database design

Resources for this topic

READING

• Text, Chapter 6: section on Data Types

• Text, Chapter 7: SQL for Database Construction and Application
Processing (to p371, down to “Embedding SQL in Program Code”).
We have covered much of this already in Topic 3 and the labs.

• Text, Chapter 9: section on Database Security p472-477

Other resources:

• Oracle documentation at
https://docs.oracle.com/database/121/CNCPT/intro.htm#CNCPT001
(much more than you need!)

https://docs.oracle.com/database/121/CNCPT/intro.htm#CNCPT001

In this week’s lab we return to Oracle as we start to look aspects of physical database design and
implementation. We’ll consider the data types available in Oracle, views, and access permissions using
GRANT.

LAB 7 – PHYSICAL DATABASE
DESIGN IN ORACLE

Topic outline

1. Where physical design fits into database design

2. Translate logical data model for target DBMS

3. Views

4. Analyse database usage

5. Denormalisation

6. Database security

1. Where physical design fits into database design

Reminder: Database Design

Process of creating a design for a database that will support the
enterprise’s mission statement and mission objectives for the
required database system

Three phases of database design:

- Conceptual database design

- Logical database design

- Physical database design

Reminder (topic 5)

Physical database design

• Process of using data from logical design to create a description
of the implementation of the database on secondary storage

• Describes file organisations, base relations, and indexes (FBI)
used to achieve efficient data access. Also outlines any relevant
security mechanism and integrity constraints

• Tailored to a specific DBMS system

• The physical design process is where we concentrate on the
efficient implementation of our logical design

• It is important to note that efficiency for one operation often
comes at the expense of another (e.g., retrieval vs update)

A physical database design methodology - steps

• Steps from Connolly &

Begg

Practice In practice, this will be an iterative process as most steps involve tradeoffs of some sort

Document Document the physical design

Monitor and tune Monitor and tune operational system

Consider Consider the introduction of controlled redundancy (denormalisation)

Design Design security mechanisms

Design Design user views

Design Design file organizations and indexes

Translate Translate logical data model for target DBMS

A physical database design
methodology - steps

1. Translate logical data model for target DBMS

2. Design file organizations and indexes

3. Design user views

4. Design security mechanisms

5. Consider the introduction of controlled redundancy
(denormalisation)

6. Monitor and tune the operational system

7. Document the physical design

•This topic

•Next topic

Steps from Connolly & Begg

2. Translate logical design to physical design in target DBMS

Translate logical design to physical
design in target DBMS

• Choose the DBMS

• Design base tables

• Design integrity constraints

• Design representation of derived data

First, select a DBMS

Goal is to pick a system that allows expansion and allows faster, easier software building
balanced against costs, that fulfils the requirements of the system

Need to:

• Analyse requirements of the user (done as part of the system development
process)

• Flush out scope and objective of research –
• what criteria will be used for evaluation, etc

• Find potential products

• From the criteria shortlist products

• Evaluate products more deeply –
• vendor demonstrations, benchmarking tests etc

• Advise selection

Can use evaluation matrix to compare on weighted criteria (e.g. see ICT284)

Types of selection criteria

“Development considerations: includes the data model, query functionality,
available drivers, data consistency. These factors dictate the functionality of
your application, and how quickly you can build it.

“Operational considerations: performance and scalability, high availability,
data centre awareness, security, management and backups. Over the
application’s lifetime, operational costs will contribute a significant percentage to
the project’s Total Cost of Ownership (TCO), and so these factors constitute your
ability to meet SLAs while minimizing administrative overhead.

“Commercial considerations: licensing, pricing and support. You need to
know that the database you choose is available in a way that is aligned with
how you do business.”

16(quoted directly from article by Mat Keep, 2015:
https://www.mongodb.com/blog/post/introducing-database-selection-matrix)

https://www.mongodb.com/blog/post/introducing-database-selection-matrix

Example evaluation matrix

17

From http://www-
css.fnal.gov/dsg/ex
ternal/freeware/my
sql-vs-pgsql.html
(link now dead)

Design base tables

In the logical design, we documented in the data dictionary:

For each relation:

• the name of the table

• a list of attributes

• the PK and, where appropriate, FKs and alternate keys

• referential integrity constraints for any FKs identified

For each attribute:

• its domain, consisting of a data type, length, and any constraints on the domain

• an optional default value for the attribute

• whether it can have missing values

• whether it is derived, and if so, how it should be computed

•The physical design should use the data dictionary from the logical design and map
those requirements to the features available in the selected DBMS

Oracle data types

Include:

• VARCHAR2 (variable length)

• CHAR (fixed length character)

• NUMBER (including precision and scale)

• DATE

• … and many others

See text, 207-289 (p317-319 in 13th edition) and
https://docs.oracle.com/database/121/CNCPT/tablecls.htm#CNCPT113

Choice of data type depends on suitability for attribute domain;
extensibility; storage efficiency

19

https://docs.oracle.com/database/121/CNCPT/tablecls.htm#CNCPT113

VARCHAR2

• Use VARCHAR2 when character data of indeterminate
length is required, e.g. names, addresses, etc

• Also when numeric data is used in an non-numeric way,
e.g. phone numbers, credit card numbers

• Will never need to do arithmetic on them

• Can also store formatting information

• Can filter records using LIKE, etc to select for regions

• Expandable, e.g. to international numbers

20

CHAR

• CHAR always stores the same length field no matter the
length of the contents – any unused space is padded with
blanks

• This can have some benefits in storage efficiency (although
not storage space) and simpler updating

• However VARCHAR is generally more flexible and more
straightforward to deal with in queries and applications

21

NUMBER

• Use for numeric values that are used as numbers, rather
than character strings

• Can define precision (total number of digits)

• And scale (number of digits to right of decimal)

12345.67

NUMBER(7,2)

• If scale is not specified, it is zero, e.g. NUMBER(2)

• Oracle doesn’t have INTEGER and will convert INTEGER to
NUMBER(38)

22

DATE

• Stores point-in-time values as year, month, day, hours,
minutes, seconds

• Standard format is DD-MON-YY, e.g. 19-SEP-17

• Can change format using TO_DATE function with format mask,
e.g.

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')

• If any part of the date/time isn’t specified the remainder
defaults to e.g. midnight (00:00:00) if no time is entered; first
day of current month and year if only time is entered

23

Other Oracle data types

• BLOB – stores unstructured binary data up to 128 terabytes
(e.g. images, videos, sound)

• CLOB – stores up to 128TB of character data

• Floating point numbers can be stored with BINARY_FLOAT and
BINARY_DOUBLE – use binary precision rather than decimal
precision

• Note that Oracle doesn’t support a Boolean data type - need to
implement e.g. as character ‘T’ or ‘F’; or numeric 1 or 0, etc

24

Implementing constraints

• The DBMS can determine what constraints can be implemented. The
ways in which constraints can be implemented includes-
- Through data definition features of the DBMS

- Through SQL codes or triggers

- In the application (through forms or in code)

• As a general rule it is better to define a constraint with the database
design - so it can be enforced consistently in every part of the
application

• Better to implement a constraint with the database design (through
DBMS definition) so it can be enforced on every part of application
that access that database

• Forms or in application code tends to be more suited to implement
complex constraints with flexible responses

Oracle integrity constraints

• NOT NULL

• UNIQUE Key

• PRIMARY KEY

• Referential Integrity constraints (FOREIGN KEY)

• CHECK integrity constraints

We have discussed these already in earlier topics and labs – refer
back to them as you need to

See https://docs.oracle.com/database/121/CNCPT/datainte.htm#CNCPT021

26

https://docs.oracle.com/database/121/CNCPT/datainte.htm#CNCPT021

Surrogate primary keys

• An artificial primary key created to simplify retrieval – e.g. if you
have a very long concatenated candidate key

• Only used for implementation, usually created automatically by the
DBMS

Advantages:

• Short, numeric, fixed – therefore ‘good’ primary key
• Simpler when used as foreign key in another table

Disadvantages:

• Meaningless to user

• May need further queries to retrieve ‘meaningful’ data
• May not be unique when multiple databases are merged

Auto increment in Oracle

• Oracle 12c has an IDENTITY data type that acts
as an Autonumber:

CREATE TABLE identity_test_tab (

id NUMBER GENERATED ALWAYS AS IDENTITY,

description VARCHAR2(30));

INSERT INTO identity_test_tab (description) VALUES ('Just
DESCRIPTION');

https://oracle-base.com/articles/12c/identity-columns-in-oracle-12cr1

https://oracle-base.com/articles/12c/identity-columns-in-oracle-12cr1

Auto increment in earlier Oracle
versions

• Oracle 11 and earlier do not have auto increment, but you
can create a numerical sequence that will provide a
sequential series of unique numbers to use as a surrogate
key:

CREATE SEQUENCE seqCustomerID

INCREMENT BY 1 START WITH 100;

100, 101, 102, …

https://chartio.com/resources/tutorials/how-to-define-an-auto-increment-primary-

key-in-oracle/

https://chartio.com/resources/tutorials/how-to-define-an-auto-increment-primary-key-in-oracle/

Referential actions in Oracle

• Recall from Topic 6 the different possibilities for maintaining
referential integrity through updates and deletes to the parent
table

• Of these, Oracle supports only:

ON UPDATE NO ACTION (default, do not specify in FK
clause – will produce an error)

ON DELETE NO ACTION (default, do not specify)

ON DELETE CASCADE (specify in FK clause)

• If other referential actions are required then they would have to
be enforced in other ways, e.g. through triggers

30

Derived data

• Other attributes can be used to calculate a derived attribute,
e.g.

•Profit from the sale of a work of art

•Age of individual artists

• A database can have a derived attribute (store):
− Have columns for ‘Profit’ and ‘Age’

• or calculated every time it is needed:

•SalePrice–PurchasePrice

•today–DateOfBirth

• How to decide which is appropriate?

Derived data: Store or Calculate?
Issues

Store?
• Additional storage cost of the derived data

• Must re-calculate continually to keep it consistent with
operational data it is derived from (e.g. use a trigger)

Calculate?

• Cost to calculate it each time it is required

Derived data: Store or Calculate?
Considerations

• How often is it required?

• How hard is it to calculate?
• Complex calculation?

• Lots of tables involved?

• How frequently does it change?
• If not storing, must recalculate derived value every time it

changes

• Will additional storage be required much?

The take-aways…

• The logical design must be translated to the physical design
using the target DBMS

• As each DBMS will have slightly different features, the final
physical design will be DBMS-dependent

• However, all of the logical design should be implemented

• Some design decisions include selecting appropriate data types,
dealing with integrity constraints, and determining the best way
to handle derived attributes

3. Views

Views

A view is the product of one or more relational
operations such as select query that we are storing. The
view essentially operates on the base tables to create
another, ‘virtual’ table. They don’t contain actual data
unlike base tables

• User of the view are only able to view those parts of the
database

• This restriction can be vertical (=PROJECT) or horizontal
(=RESTRICT)

SQL: CREATE VIEW…

• CREATE VIEW is very similar to the ‘CREATE TABLE AS’ statement:

• CREATE VIEW CSStudents AS

• SELECT *

• FROM Student

• WHERE StdMajor = ‘CS’;
• WITH CHECK OPTION;

• Once the view is created, it can be queried and (sometimes)
updated the same as a base table

• Views are dynamic – changes to the base table(s) are
reflected in the view

SQL: CREATE VIEW… WITH CHECK OPTION

The WITH CHECK OPTION clause ensures that updates to an
updateable view don’t violate any constraints on the underlying
tables:

CREATE VIEW CSStudents AS

SELECT *

FROM Student

WHERE StdMajor = ‘CS’
WITH CHECK OPTION;

This means that if StdMajor in STUDENT had been defined as a having a
limited set of allowable values by a CHECK constraint, it would not be possible
to violate this through updating the view

Uses of views

1. Provides a way to hide rows or columns (give the users access to the data
that they need to do their job)

2. Can update base tables (sometimes) (insert,delete,update)

3. Complex SQL syntax can be hidden

4. Display outcomes of calculations

5. Able to isolate the user view of the data from the actual table data

3. Layer built-in functions

4. Provide level of isolation between table data and users’ view of the data
5. Assign different processing permissions to different views of the same table

6. Assign different triggers to different views of the same table

(There are examples of each of these uses in the text, p361-371)

View updateability

• Views are ‘virtual’ tables – unlike the base tables they are
derived from, they do not contain any actual data

• However, in some cases the base table(s) can be updated
through the view, using exactly the same SQL commands
(insert, delete, update) as for tables – when this can occur the
view is said to be updateable

• The rules for view updateability are complex and DBMS-
dependent, but basically the update must provide an
unambiguous result on the base table(s)

Updateable views (simply)

Updateable:
• Views for a single table without computed columns and any columns that

require a value are present in the view

Not updateable:
• View have an aggregated or computed column

• Views are created from some joins

Possibly updateable:
• A primary key on a single table with some required columns not having a

value may be able to do update (if requirement column not involved) and
delete but not allowed insert (cos don’t know what to put in a required
column in order to stop integrity constraint)

• Multiple tables, updates could be allowed on the most child table in the view
only if rows of that table can be uniquely identified

The take-aways…

• Views are ‘virtual’ tables – a selection of row/columns based on
the base tables for a variety of purposes

• Views permit simplification and abstraction of the underlying
tables for the user

• Views are dynamic – updates to the base tables are reflected in
the view

• However, the reverse does not apply: the base tables can only
be updated through the view in certain limited circumstances

4. Analyse database usage

Transaction analysis (Topic 8)

• In physical design, we need to determine the
optimal file organisations and the indexes that
are required to achieve acceptable performance
(Topic 8)

• Many of the choices in this phase are mutually
exclusive

- A file organisation good for bulk uploads will
perform poorly for just about everything else!

• So we need to know how the database will be used - this
is the first step

Transaction analysis

• An understanding of the transactions the database will run has a MAJOR
impact on physical design (80/20 rule)

• Not all transactions will be known at design time, but the designers should
have an understanding of the most important ones

• Analysis of the transactions will include criteria such as:

• frequency

• business (or system) impact

• peak load

• Also need to know high-level functionality of the transactions, such as:

• attributes that are frequently updated

• search criteria used in a query

Transaction analysis - tools

There are many tools that can be used for analysing transactions,
e.g.

• Transaction/ Relation Cross Reference Matrix (CRUD)
• Shows Create (C), Read (R), Update (U), and Delete (D) data

accesses to tables

• Transaction Usage Map (TUM)
• Shows the pattern of data accesses and their frequency

These analyses can be presented in a transaction analysis report
as part of the logical or physical design documentation

CRUD matrix

Invoice CRU R R R R

Project R U R

Invoice Line CRU R R R R

Part R R U R R

Supplier R RU R

P
ro

je
ct

 M
an

ag
em

en
t

U
p

lo
ad

 t
o

 D
at

a
W

ar
eh

o
u

se

C
re

at
e

In
vo

ic
e

A
cc

o
u

n
ts

 P
ay

ab
le

In
ve

n
to

ry

Transaction Usage Map

Identifies the major transactions and analyses the usage patterns
and usage paths required for each transaction

Combines information for the transaction:
• Data volume

• Average

• Peak (volume and time)

• Expected growth

• Nature of participation of tables/columns

•Also known as: logical access maps, action diagrams

Transaction Usage Map
Consider a typical transaction: Updating an
invoice for a project

•Involves:
•Create Invoice details

•Create invoice
•Check project exists

•Add Invoice Line details
•Create invoice line
•Check invoice exists
•Check part exists
•Check Supplier exists

49

TUM: Example Step Name

Access

type

Refs per

Trans.

Peak

Refs/Hr

1Create new invoice C 1 97.5

2Project R 1 97.5

3New Invoice Line C 10-15 1462.5

4Part R 10-15 1462.5

5Supplier R 10-15 1462.5

6Invoice R 10-15 1462.5

Total References: 42-62 4582.5

•We can add the
number of expected
transactions to the
map, showing the
number of times
each table is
accessed

Estimate disk space requirements

• We need to know how much disk space the database will
require

• Can calculate from space required for populated base tables
and other objects such indexes

• Record length (= sum of field lengths) x estimated number of
records

• System tables will also require storage space

• Must allow for expected growth

51

The take-aways…

• Before we can create an efficient physical design, we need to
know how the database will be used

• Transaction analysis can be used to identify characteristics
such as:

• Areas of potential high load (average, peak)

• Frequently queried tables/columns that may benefit from
indexing

• Tables that will grow rapidly

• Candidates for possible denormalisation

5. Denormalisation

Denormalisation (“controlled
redundancy”)

- Additional choice in physical database design stage

- A database that is fully normalised to 3NF is consistent, is easier to update,
requires less coding to enforce integrity constraints, is flexible and has minimal
redundancy

• However, it may not be the best in terms of processing efficiency

Denormalisation

• Denormalisation is about joining tables so query is more easier (better processing efficiency). So
tables isn’t often updated but queried a lot and performance is slow use denormalisation

• Advantages-
• Denormalisation can provide improved performance by making query easier

• Disavantages-

• Increased complexity for implementation to maintain consistency (because we are trading advantages we did normalisation in the first
place)

• Often “denormalisation” ends up with lower normal form, but may not (e.g. it may just include more nulls than
the original tables)

• Makes updates slower because retrieval is quicker (easier query)

• Flexbility is reduced

• Remember that denormalisation is a deliberate choice based on processing needs – it is not the same
as not normalising in the first place!

55

When would denormalisation be
appropriate?

• Denormalisation can provide better efficiency, but remember
that:

• It makes implementation more complex – to maintain consistency

• It can sacrifice flexibility

• It may speed up retrievals but slow down updates

• As a general principle, if performance is unsatisfactory and the tables
involved are updated infrequently but queried a lot, it may be worth
denormalising

56

Examples of denormalisation
strategies

• Including repeating groups from a 1:N relationship in the
parent table

• Combining 1:1 relationships

• Creating a single table from a generalisation hierarchy

• Duplicating non-key columns in a 1:N relationship to reduce
joins

• Duplicating foreign key columns to reduce joins

57

Denormalisation:
Including repeating groups in the parent
table

• The rules of normalisation force repeating groups to be stored in an
M-side table separate from an associated 1-side table

• e.g. Territory and quarterly TerritorySales

• Put repeating group as a value in the parent table rather than
attribute (??). For repeating group accessed often with it’s parent

• If a repeating group is always accessed with its associated parent
table, denormalisation may be appropriate

• Repeat quarterly TerritorySales within Territory record

Denormalising a repeating group

TerrNo

TerrName

TerrLoc

Territory

TerrNo

TerrQtr

TerrSales

TerritorySales

1

M

TerrNo

TerrName

TerrLoc

Qtr1Sales

Qtr2Sales

Qtr3Sales

Qtr4Sales

Territory

Normalised Denormalised

Why is the denormalised solution less flexible? Because if terrSales
is monthly sales and not quartelySales then we need to update
more attributes

Denormalisation:
Combining a 1:1 relationship

• STAFF and NEXT-OF-KIN are in a 1:1 relationship, with each
Staff member optionally having one Next of Kin

• Denormalise: Include (NEXT-OF-KIN) relation1 details in
(STAFF) relation2

• Disadvantage-

- New table has possibly many nulls which is wasted space

• New table will potentially have many nulls (wasted space) if few staff have
next of kin – balance against improved performance in retrievals

60

Denormalisation:
Creating a single table from a
generalisation hierarchy

• Putting all the subtype and superTypes tables all into one table
with all the attributes

• Disadvantage-

- New table has possibly many nulls which is wasted space because attribute
not applicable for the subtype will have a null

• Again, need to strike a balance with the number of shared and
specific attributes and the number of potential nulls

Denormalising a
generalisation hierarchy

Denormalisation:
Duplicating non-key columns in a 1:N
relationship to include meanings with
codes)

DeptNo

DeptName

DeptLoc

Dept

EmpNo

EmpName

DeptNo

Emp

1

M

Normalised Denormalised

DeptNo

DeptName

DeptLoc

Dept

EmpNo

EmpName

DeptNo

DeptName

Emp

1

M

What are the disadvantages of the denormalised solution?
Employee 2NF thus modification anomalies for 2NF exist

Take non-key attribute (DEPTName)
put down there. For Queried a lot but
not updated often. Eliminates the
need to join in the query thus better
performance of retrievals

The take-aways…

• The careful introduction of controlled redundancy
(“denormalisation”) can improve performance in some
situations

• These situations are often about reducing joins, which are one
of the most expensive operations

• As a general principle, if performance is unsatisfactory and the
table(s) updated infrequently but queried a lot, it may be worth
denormalising

• The tradeoffs include larger tables, more nulls, and the
increased potential for modification anomalies

6. Design security mechanisms

Database security

• The objective of database security is to only allow
authorised users to do allowed activites at an authorised
time EG

• Students can enrol themselves in units in MyInfo

• Academics can upload unit results

• Advanced standing staff record credit and exemptions

• Must continuously maintain the design of the security
throughout the life of the system(s) and database because
requirements change

• The processing rights and responsibilities for all users must
be determined during the database design, and enforced
using features of the DBMS and applications

Why do we need database security?

Data is an important organisation resource
• It must be managed as any other valuable resource such as plant & equipment

• Corporate data is often stored electronically and the organisation relies on this data

• Data is needed to be kept both confidential and secure

• e.g. client lists and details

• Harm resulting to organisation from security breaches can be both tangible (loss of
data) and intangible (e.g. reputation and client confidence)

Data is a shared resource and there are multiple users of the data
and they have multiple sets of priorities

• Need to make sure those priorities don’t conflict
• e.g. retention requirements for different user purposes

Security (Reducing) risks

There are broad areas in which organisations should be
seeking to reduce risk:

• Fraud as well as theft
- Focus attention on reducing the opportunity for these to occur

• Privacy and confidentiality is lost
- Refers to data which is crucial to the organisation, or, in the case of privacy, to

the individual

• Integrity loss
- Results in invalid or corrupt data

• Loss of availability
- Increased requirement for 24/7 access to data

DBMS Security Guidelines 1

• Run DBMS behind a firewall, but plan as though the firewall has been
breached

• Apply the latest OS and DBMS service packs and fixes

• Use the least functionality possible

• Support the fewest network protocols possible

• Delete unnecessary or unused system stored procedures

• Disable default logins and guest users, if possible

• Unless required, never allow all users to log on to the DBMS interactively

• Protect the computer that runs the DBMS

• No user allowed to work at the computer that runs the DBMS

• DBMS computer physically secured behind locked doors

• Access to the room containing the DBMS computer should be recorded in a log

Copied from Fig 9-16 in Kroenke, D.M., and Auer, D.J., 2016, Database Processing: Fundamentals,

Design and Implementation, 14th Edition, Pearson.

DBMS Security Guidelines 2

• Manage accounts and passwords
• Use a low privilege user account for the DBMS service

• Protect database accounts with strong passwords

• Monitor failed login attempts

• Frequently check group and role memberships

• Audit accounts with null passwords

• Assign accounts the lowest privileges possible

• Limit DBA account privileges

• Planning
• Develop a security plan for preventing and detecting security problems

• Create procedures for security emergencies and practice them

Copied from Fig 9-16 in Kroenke, D.M., and Auer, D.J., 2016, Database Processing: Fundamentals,

Design and Implementation, 14th Edition, Pearson.

Authentication, authorisation and
access control

• Authentication
• Checking whether the user is who they say they are
• DBMS, OS authentication or a combination

• Authorisation
• What a user is and isn’t allowed to do
• Certain Subjects have access to certain actions on certain objects

• Access control

Access controls

Are about revoking and granting privileges

• A privilege enables a user to access or produce (read, write, or
modify) some database item (such as a table, view, and
index) or to execute certain DBMS tools

• Privileges are granted to users or roles to do the tasks needed
for their jobs

• Granting as few privileges for a user or a role is preferred from
a security perspective

- i.e., only grant privileges when they are needed

A model of DBMS security

Copied from Fig 9-15in Kroenke, D.M., and Auer, D.J., 2016, Database Processing: Fundamentals,

Design and Implementation, 14th Edition, Pearson.

DAC and MAC

• Discretionary Access Control (DAC)
• Most common approach in DBMSs

• Access rights is worked out by owner

• Typically identity-based access control: Owner specifies
other users who have access

• Mandatory Access Control (MAC)
• Access right is granted by rules

• Also called rule-based access control

SQL GRANT

• SQL standard supports DAC through the GRANT and REVOKE
commands

• The GRANT command gives privileges to users, and the
REVOKE command takes away privileges.

•GRANT {Privilege List | ALL PRIVILEGES}

•ON Object Name

•TO {Authorisation List|PUBLIC}

•[WITH GRANT OPTION]

• If WITH GRANT OPTION is specified, the user can pass the
privilege on to other users

GRANT: Table Privileges

The following privileges (among others*) can be granted on
tables:

- SELECT

- DELETE

- INSERT [(ColumnName,….)]
- UPDATE [(ColumnName,….)]

GRANT UPDATE ON Artist (LastName) TO userA;

GRANT SELECT ON Artist TO userA;

*ALTER, REFERENCES, INDEX

GRANT…

Granting to PUBLIC
• Grants the privilege to any user who can log into the DBMS

• Should be exercised with caution!
• When might this be a good thing to do?

GRANT SELECT ON Artist TO PUBLIC;

GRANT: Other Privileges

• Database Objects

- User can create database structures such as databases,
tables, triggers, etc

• System Privileges

- User can execute certain system commands such as start and
shutdown, start traces, manage storage

- Usually reserved for DBA

• Program and Procedures

- Users can execute programs or stored procedures

REVOKE

REVOKE [GRANT OPTION FOR]{PrivilegeList|ALL
PRIVILEGES} ON ObjectName

FROM {AuthorisationList|PUBLIC}[RESTRICT|CASCADE]

• RESTRICT revokes the privilege only from the specified
user

• CASCADE revokes it from any dependent privileges (those
passed on by the grantees)

• GRANT OPTION FOR revokes the ability to pass on the
privilege (revokes ‘with grant option’)

Roles and Groups

• Privileges can also be granted to roles and groups

• Roles are a set of privileges to objects that are consistent with
the role

- Users are then allocated to a role

- Simplifies administration
- STUDENT role

• Groups

- Tend to be built in to particular DBMSs
- SYSADM, DBADM, DBMAINT, SYSOP

Other DBMS-level security
mechanisms

• Views can be used with GRANT to restrict access to parts of
the database

• Encryption of important data in particular over the network

• Keeping track of database access through an audit trail can
detect breaches to security

• Regularly back up the database and the log file

• Privileges can be managed on stored procedures so that
access to the base data is via execution of the stored
procedure, rather than via a view or the table itself

Application-level security

• When DBMS security methods are not enough extra security
code can be outlined in the application
• Application security in Internet applications is often provided on the Web

server computer

• But use the DBMS level security methods first because

• The closer the security enforcement is to the data, the less chance there
is for infiltration

• DBMS security features are faster, cheaper, and probably result in higher
quality results than developing your own

9-82 KROENKE AND AUER - DATABASE PROCESSING, 12th

Edition © 2012 Pearson Prentice Hall

The take-aways…

• An organisation’s database is one of its most significant resources and must
be protected, both during normal use and against deliberate attack and
disasters

• The goal of database security is to ensure that only authorised users can
perform authorised activities at authorised times

• Access controls are the most common DBMS security mechanisms

• The SQL GRANT and REVOKE statements are used by an object’s owner to
assign and remove privileges on objects to users and groups

• Additional security measures include views, backups and logs, encryption,
auditing and integrity constraints, and through the application

7. Document the physical design

Document the physical design

• As always, all of the physical design decisions made during this
phase must be documented – and the documentation kept up
to date

• Much of the physical design will be implemented by the DBMS
itself in the form of system tables in its internal data dictionary
when the database is built

• Other documentation facilities are often provided by the DBMS
environment or tools

85

Topic learning outcomes

After completing this topic you should be able to:

• Describe the activities in physical database design

• Design tables and integrity constraints for a target DBMS, based on
the logical design

• Explain what views are and what they can be used for

• Draw a transaction usage map (TUM) for the most important
transactions on a database

• Determine when denormalisation may be appropriate

• Use the SQL GRANT and REVOKE statements to manage user access
to database objects

• Briefly describe other measures for DBMS-level security

• Document the physical database design

What’s next?

In the next topic we look more closely at how the data in the database is physically held on
secondary storage.

One of the responsibilities of the DBA is to determine the optimal file organisations and
indexes that are required to achieve acceptable performance for the important transactions.
These work together with the inbuilt query optimisation techniques of the DBMS to provide
efficient processing.

